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1.0 SUMMARY 
 
 This expository report discusses fundamental aspects of the polynomial chaos method for 
representing the properties of second order stochastic processes. As originally developed by 
Norbert Weiner, a polynomial chaos represents key properties of a stochastic process through the 
application of finite series of orthogonal polynomials. The attendant polynomial expansion is 
used to describe the statistical properties of a stochastic process based upon an input uncertainty. 
The statistics of a random process is given by evaluating the appropriate polynomial chaos for an 
input uncertainty represented by one or more random variables. An evolved application of this 
idea applies a polynomial chaos to represent uncertainties in boundary or initial conditions for 
partial differential equations. Here, the elementary theory of the polynomial chaos is presented 
followed by the details of a number of example calculations where the statistical mean and 
standard deviation are compared against exact solutions. The Legendre chaos is described in 
some detail for uniformly distributed input random variables. Also, the Hermite chaos is 
discussed for random variables possessing a Gaussian distribution. A number of example 
problems are solved. 
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2.0 INTRODUCTION 
 
 Real world problems involving science and engineering always involve uncertainty. 
Specific uncertainties in the form of imprecisely known input parameters propagate through a 
physical mechanism and create uncertainty in the system output forming a stochastic process 
involving one or more random variables. A simple example considered later in this report 
addresses the oblique shock wave formed by the supersonic flow over a wedge. In this scenario, 
we presume that the wedge angle, with respect to the freestream direction, is imprecisely known. 
The wedge angle is regarded as a random variable with a mean value and a standard deviation 
based upon a distribution. The ensuing oblique shock wave angle becomes a function of this 
random variable and takes on a randomness that can be assessed by the polynomial chaos. Other 
properties associated with the shocked flow field also adopt random properties that may also be 
assessed by the chaos. This example is conceptually simple to understand, but the same idea can 
be extended to other more complicated physical systems. The solutions of either ordinary or 
partial differential equations subject to uncertainties in initial or boundary conditions also inherit 
random characteristics that can be revealed by the chaos. For this reason, there are many 
applications for this mathematical tool. Before beginning a detailed mathematical development 
of the chaos, it is instructive to discuss the nature of physical uncertainties. 
 
2.1 The Concept of Uncertainty 
 
 As is the case for physical properties, the concept of uncertainty has been analyzed and 
properly defined.[1] Consider the uncertainty existing in the measurement or calculation of a 
physical quantity. If the quantity possesses a true value with no variation, then the variation 
sensed in measuring or calculating the quantity is referred to epistemic. On the other hand, if a 
physical quantity exhibits a natural variability, (that is, it possesses no true (or certain) value), 
then the associated uncertainty is denoted as aleatoric. In the Bayesian probabilistic framework, 
epistemic uncertainties can be addressed by techniques such as those described below. Aleatoric 
uncertainties are readily treated by probabilistic methods. The primary application considered in 
the results section of this report can be regarded as having epistemic uncertainty. In this case, the 
wedge angle is assumed to possess a small variation. With the use of clever mathematical 
techniques, the statistical parameters (e.g., mean and standard deviation) of functions of these 
uncertainties can be predicted with accuracy. 
 
2.2 Mathematical Representation of Stochastic Processes 
 
 The mathematical development of stochastic processes is extensive, the culmination of 
decades of research, so only the briefest description is provided here. The first requisite concept 
is that of the sample space. A sample space is the set of all possible outcomes of an experiment 
whether the experiment is simple such as a coin toss or complex, or the measurement of 
temperature or fluid stress taken at some point in a turbulent flow field. Detailed examples of 
sample spaces are contained in Ross.[2] On a given sample space, much like a mathematical 
domain, we define functions denoted as random variables. For example, on the event space for a 
coin toss, we can define a random variable that counts the number of heads occurring for a 
certain number of coin tosses. As another example, we may define a random variable that 
represents the time varying electrical voltage existing at a point in an electronic circuit. The 
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former is a discrete random variable while the latter is a continuous random variable. A discrete 
random variable takes on either a finite or countably infinite number of values while the 
continuous random variable takes on a finite number of values. Building upon these concepts, a 
stochastic process is a collection of random variables X(t) indexed by a set T where t ϵ T. T is 
denoted as the indexing set; it may consist of either a finite or infinite number of elements 
depending on the nature of the stochastic process. More specifically, X(t) is the state of the 
stochastic process X at time t.[2] In the context of this report, X(t) may be regarded as the 
uncertainty in some quantity. With this assertion, we may envision functions of the uncertainty 
represented by X(t). This function of the uncertainty (random variable) requires the use of 
“functionals”; a functional may be thought of as a function of functions.[3] In this sense, a 
functional is defined on a vector space of functions, and this concept represents a significant 
mathematical abstraction beyond that of the more commonly known vectors defined in Euclidean 
space nℜ .  
 
 A significant difficulty in simulating stochastic processes, or more particularly, in 
simulating stochastic variation in otherwise deterministic systems lies in the lack of an intuitive 
understanding of function spaces.[4] For stochastic problems, the function space must be 
“measurable” with respect to a probability space consisting of the sample (or event) space, a σ-
algebra defined on the event space and a probability measure P. The σ-algebra is a collection of 
subsets of the event space that possess special properties.[5] One approach to the problem of 
simulating random or stochastic processes is Monte Carlo simulation, a technique that requires 
the repeated sampling of the σ-algebra. This method, although highly effective, requires 
sampling many, many points requiring a great deal of computing resources.[6,7,8] Another 
approach that can be less resource intensive entails representing the stochastic process in terms 
of a set of orthogonal functions defined on the function space.[4,5] Although the resulting 
orthogonal decomposition (a spectral approach) consists of an infinite series, the series can be 
finitely truncated for computational purposes. The principal function space containing the 
orthogonal function set is denoted as ),(2 PL Ω where Ω  is the sample space, and P is the 
probability measure. L2 is a Hilbert space known as the space of square integrable functions 
widely applied throughout mathematical physics.[9] For a given stochastic process defined at 
points in space, an orthogonal decomposition of great theoretical interest is the Karhunen-Loeve 
expansion.[4,5] 
 
 The Karhunen-Loeve expansion provides an orthogonal decomposition for any second 
order random field (stochastic process) ),( ωxw   where x  is the space coordinate and θ  is an 
element of the random event space. The Karhunen-Loeve expansion for this random process is 
written as 
 

                                              )()()(),(
0

xfxwxw nn
n

n
 λwxw ∑

∞

=

+=                                              (1) 

 
where )(ωξn  is a set of random variables defined on the event space Ω , and )(xfn


 is a set of 

deterministic orthogonal functions. It can be shown that the orthogonal function set consists of 
the eigenfunctions for the covariance function of the random process. The nλ  are the associated 
eigenvalues.[4,5] The space-dependent mean value for the random process is ).(xw  As defined, 
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this expansion is convergent in mean squared error and is unique, but it is mostly of theoretical 
interest. It is not very useful for practical computations since the covariance function for the 
random process must be known a priori in order to guarantee the expansion’s convergence and 
uniqueness.[4]  In most cases, the covariance function is unknown. Still, the expansion motivates 
the search for other orthogonal decompositions that are more easily applied even if the 
convergence of individual decompositions must be carefully monitored. The method showcased 
in this report applies a polynomial chaos expansion to construct the orthogonal decomposition. 
An early example of this expansion is Weiner’s homogeneous chaos.[10] 
 
 Wiener’s continuous homogeneous chaos cast in three dimensions is a measurable 
function ρ  with 
 
                                                            );,,( 321 βρρ xxx=                                                         (2) 
 
In this chaos, ),,( 321 xxxx =  is the deterministic space point while ]1,0[∈β  represents the 
random range of the stochastic process.  Other chaos formulations have been proposed and 
implemented. A specific chaos is due to Cameron and Martin and is denoted as a Fourier-
Hermite chaos for a chosen functional. The Cameron-Martin theorem states that the Fourier-
Hermite series of any real or complex functional ][xF  in 2L  converges to ][xF  in the 2L  sense 
with Wiener measure.[3] In the same reference, the orthogonality of the Fourier-Hermite chaos is 
also demonstrated. The measure (or weighting function) used in integration is the same as the 
probability density function for Gaussian random variables.[11] This chaos is still widely applied 
for uncertainties consisting of Gaussian random variables. To provide for the assessment of other 
types of random variables, other chaos formulations have been developed. These formulations 
are included in the generalized polynomial chaos or “Askey Scheme”.[11] In this generalized 
chaos, an appropriate set of orthogonal polynomials is paired with a random variable 
distribution. As described in Reference [11,12,13], these combinations are shown in Table 1. 
 

Table 1. Distribution Function/Orthogonal Polynomial Chaos Combinations 

Distribution Function Orthogonal Polynomial Set 
Gaussian Hermite 
Uniform Legendre 
Gamma Laguerre 

Beta Jacobi 
Poisson Charlier 

Negative Binomial Meixner 
Binomial Krawtchouk 

Hypergeometric Hahn 
 
Consider a Hermite chaos for random function α  formulated for exactly one random variable ξ  
defined for the event space Ω  (where Ω∈ω ). For this scenario, the chaos expansion is written 
as 
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                                                        ))(())((
0

ωξαωξα n
n

nH∑
∞

=

=                                                    (3) 

 
The form of this expansion is quite simple since there are no space or time parameters explicitly 
associated with the random function. In this sense, this problem is analogous to a single coin toss 
or dice throw problem. Specifically, the nα  are expansion coefficients that are determined to 
complete the representation of the random function α . The notation nH  represents the order n  
Hermite polynomial where ,1,0=n . The Hermite polynomials are written as functions of 
the random variable ξ , e.g., 1)(0 =ξH ; ξξ =)(1H ; 1)( 2

2 −= ξξH , etc.[4] If the random 
function involves more than one random variable, e.g., 1ξ  and 2ξ , then the expansion functions 
are formed by tensor products of the polynomials cast in one random variable. The procedure for 
determining the expansion coefficients nα  is explained in the following section of this report. 
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3.0 METHODS, ASSUMPTIONS AND PROCEDURES 
 
 In the discussions below, we develop the equations needed in applying a polynomial 
chaos to represent uncertainties in stochastic processes. The two principal approaches for 
applying a polynomial chaos are (i) the intrusive method and (ii) the non-intrusive method. 
Although this report concentrates on the non-intrusive application, the intrusive approach is also 
briefly described. For the example problems shown in Section 3, detailed equations are presented 
for the Legendre polynomial chaos associated with for a system of uniform random variables. 
Due to the simplicity of the probability measure for the uniform random variable, this chaos is 
the easiest to derive. As a result, the development presented below is intended to be pedagogical. 
As a second discussion, the Hermite polynomial chaos is developed for Gaussian random 
variables. 
 
3.1 Intrusive Polynomial Chaos 
 
 This manifestation of polynomial chaos is denoted intrusive since it entails alterations to 
the system of governing equations. An example discussed in the literature involves solution of 
the incompressible Navier-Stokes equations.[1,17] In this case,  a single parameter is 
decomposed say, u, the x-velocity component. 
 
                                                       )(ˆ)()0,( xuxutxu  x+==                                                     (4) 
 
In this expression, ξ  is a random variable with unit variance. Polynomial chaos expressions for 
all stochastic quantities, e.g., 
 

                                                     )(),(),,(
0

ξξ k

P

k
k tξutξu Ψ=∑

=


                                                  (5) 

 
Expressions such (5) are substituted into the Navier-Stokes equation. By use of the Galerkin 
procedure, evolution equations for expansion coefficients ku may be derived.[17] For instance, 
 

                                         kk

P

i

P

j
kji

k upuuM
t

u 2

0 0

)( ∇+−∇=∇•+
∂
∂ ∑∑

= =

ν                                         (6) 

 
                                                                     0=•∇ ku                                                                 (7) 
 
for Pk ,,0 = , and 
 

                                                              2
k

kji
kjiM

Ψ

ΨΨΨ
=                                                           (8) 

 
The kjiM  are convolution integrals rendering numbers for use in (6). Equations (6) and (7) must 
be solved via numerical means to obtain the expansion coefficients. This alteration of the 
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governing equations is characteristic of intrusive polynomial chaos methods. Given the difficulty 
associated with implementing these schemes, implementation details are not provided here. 
 
3.2 Fundamentals of Polynomial Chaos 
 

As its most basic idea, a polynomial chaos expands the uncertainty of a stochastic process 
in terms of a system of orthogonal polynomials. By increasing the number of terms in the 
expansion, the overall accuracy of the method is enhanced. Of course, obtaining the expansion 
coefficients for the series constitutes the majority of the labor required to implement this method.  
The polynomial chaos approach applied here is a direct application of the equation 
 

                                                   )(),(),,(
0

* ξαξα


j
j

j tξtξ Ψ=∑
∞

=

                                                 (9) 

 
where ),,(* ξα

 tξ  is the random process of interest; jΨ  is an element of an orthogonal family of 

polynomials, and the ),( txj
α  are the expansion coefficients for these polynomials. Of course, ξ


 

is a vector of random variables representing the system’s uncertainties. Each of these random 
variables is usually chosen as of either “standard” uniform or Gaussian form. Of course, other 
types of random variables can be used. The usual procedure is to have the random variable match 
the random characteristics of the uncertainty. )(ξ


jΨ is a multi-dimensional orthogonal 

polynomial in that 
 
                                                        kjj

D
kj dw dξ

ξ

2

)(

)( Ψ=ΨΨ∫



                                                  (10) 

 
Equation (10) is the statement of orthogonality. The expected value for *α  may be computed as 
follows. The expected value is defined as *α ; therefore, by truncating the series to a finite 
number of terms, 
 

                                           ∫∑ Ψ=
= )(0

* )()(),(),(
ξ

ξξξαα




D
j

P

j
j dwtξtξ                                        (11) 

 
 

                   ∫∑∫ Ψ+Ψ=
= )(1)(

00
* )()(),()()(),(),(

ξξ

ξξξαξξξαα




D
j

P

j
j

D

dwtξdwtξtξ                   (12) 

 
Although series truncation is common practice, it must be performed carefully since it may affect 
series convergence. Equation (12) may be simplified that realizing that 0Ψ  is the zeroth order 
polynomial, a constant, so it can be chosen as unity. Thus, 
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                     ∫∑∫ Ψ⋅Ψ
Ψ

+=
= )(

0
1 0)(

0
* )()(

),(
)(),(),(

ξξ

ξξξ
α

ξξαα




D
j

P

j

j

D

dw
tξ

dwtξtξ                    (13) 

 
In equation (13), the first term is evaluated by noting that the probability measure is written as 
 
                                                               ξξξ


dwdw )()( =                                                         (14) 

 
Applying the rules of probability, 
 
                                                                1)(

)(

=∫ ξξ
ξ




D

dw                                                            (15) 

 
Next, observe that the second term contains the rewritten integral 
 
                                            Pjdw

D
j ,,2,1,)()(

)(
0 2




=Ψ⋅Ψ∫

ξ

ξξξ                                        (16) 

 
The rewrite is made possible since 0Ψ  is a constant, equal unity. By using (10) and (15), the 
integral in (16) is zero. Hence, 
 
                                                            ),(),( 0

* txtx  αα =                                                        (17) 
 
The variance can be computed by a similar set of arguments. Recall that 
 

                                                          
2*2**)var( aaa −=                                                     (18) 

 
The first term in (18) is evaluated by substituting (9), i.e., 
 

                       ∑∑∑ ∑
= == =

ΨΨ=Ψ⋅Ψ=
P

j

P

k
kjkj

P

j

P

k
kkjj

0 00 0

2* )()()()( ξξααξαξαα


                      (19) 

 
By using the integral to compute the expectation, 
 

                                               ξξααα
ξ




dwk

D
jk

P

j

P

k
j )(

)(0 0

2* ΨΨ= ∫∑∑
= =

                                           (20) 

 
Applying (10), we obtain 
 

                                            2

0

22

0 0

2*
j

P

j
jkjkk

P

j

P

k
j Ψ=Ψ= ∑∑∑

== =

αδααα                                      (21) 
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Substituting (21) and (17) into (18), we have that 
 

                           ∑∑
==

Ψ=−Ψ=
P

j
jj

P

j
jj txtxtxtx

1

222
0

0

22* ),(),(),()),(var(  aaaa                           (22) 

 
The standard deviation ),( txσ  is, by definition, the square root of the variance, so 
 

                                          ∑
=

Ψ==
P

j
jj txtxtx

1

22* ),()),(var(),(  aaσ                                      (23) 

 
As illustrated by (17) and (23), the mean and standard deviation for the random process are 
easily calculated from the polynomial chaos expansion. 
 
3.3 Point Collocation Non-Intrusive Polynomial Chaos 
 
 Non-intrusive polynomial chaos methods do not require modification of the governing 
equations. Of equal importance is the fact that there is more than one non-intrusive method. 
Spectral progression and linear regression are two such methods.[18] As with the intrusive 
method, equation (9) is applied to physical properties of interest say, absolute pressure for a fluid 
dynamics problem. The property of interest is represented by ),,(* ξα

 tξ . It is important to 
realize that ξ


represents the input or driving uncertainty say, a varying initial or boundary 

condition. For the point collocation method, the random variable ξ


 is randomly sampled in 
accordance with its statistical distribution. Each sample forms a realization of the random 
process *α . For a direct determination of the polynomial chaos coefficients jα , P+1 samples, 

Pjj ,,1,0, 


=ξ , of the random process *α  are computed (perhaps by use of fluid dynamics 

computer codes for each jξ


). Applying this idea prior to series truncation, equation (9) is 
rewritten as 
 

                                       Pjtxtx jk
k

kj ,,1,0,)(),(),,(
0

* 


=Ψ=∑
∞

=

xαxα                                 (24) 

 
The polynomials )( jk ξ


Ψ  are calculated for the choice of jξ , so these parameters are known 

quantities. Equation (24) actually represents a system of P+1 equations in P+1 unknowns. As a 
system of linear equations, (24) can be solved for the kα . The example problems documented 
later in this report apply LU-decomposition with partial pivoting to solve this equation.[19]  
Naturally, the title of this method arises from the use of the collocation points jξ


. 

 
 The point collocation method applied here is introduced in References 14, 15, 20 and 21. 
It is relatively easy to implement, yet it is subject to some limitations that must be mentioned. 
Recall from the preceding paragraph that the polynomial chaos equations are defined at the P+1 
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collocation points. For a given continuous random variable distribution (e.g., uniform, beta, 
Gaussian), a random selection of collocation points is not unique. For this reason, the computed 
mean, standard deviation and other statistical parameters are not unique. A number of numerical 
techniques have been designed as remedies for this difficulty. One approach is to generate a 
more even point distribution to provide better coverage of the collocation point space. This may 
be accomplished through the use of Hammersley or Halton data sets.[22,23] Numerical 
experiments conducted by the author demonstrate that a Hammersley point set does provide 
better coverage of the uncertainty distribution. Unfortunately, the lack of true randomness in this 
data set tends to induce linear dependence within the system (24). The system determinant 
collapses to zero causing the matrix solution to fail. Still, this difficulty can be bypassed by 
adding a pseudo-random perturbation to the Hammersley points’ coordinates. Computations 
have shown that this algorithm works reasonably well. 
 
 An alternative that can grant good coverage of uncertainty space (when combined with 
random point collocation) is the method of least squares. In this approach, a superset of R+1 
random collocation points is generated where R > P. This number of collocation points forces 
(24) to become an over determined system of equations. The over determined version of system 
(24) may be written as 
 
                                                                    [ ] *αα


=Ψ                                                               (25) 

 
where ][Ψ  is an )1()1( +×+ PR matrix of the form 
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                                         (26) 

 
and α is a 1)1( ×+P  vector containing the unknown expansion coefficients, , i.e., 
 
                                                            T

P ),,,( 10 αααα 

=                                                        (27) 

 
The right hand side of (25) is the 1)1( ×+R  vector denoted *α

  containing the values of the 
random process evaluated at the 1+R  collocation points. This vector is written as 
 
                                                           T

R ),,,( **
1

*
0

* αααα 

=                                                       (28) 

 
The classical least squares system of equations is obtained by multiplying (25) by the transpose 
of polynomial matrix, i.e., 
 
                                                            *][][][ αα

 TT Ψ=ΨΨ                                                      (29) 
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The matrix inner product ][][ ΨΨ T  is a )1()1( +×+ PP  square matrix. Similarly, *][ α

TΨ  is a 
vector with P+1 elements. With these dimensions, (29) is solvable by standard numerical linear 
algebra techniques. The specific matrix-vector forms are 
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The classical least squares formulation works well when applied to problems involving the 
uniform probability distribution. One may recall that uniform probability distribution has a 
constant weight function )(ξ


w  within its probability measure. Other probability distributions 

have non-constant weight functions. An examination of the above equations reveals that the 
classical least squares approach does not incorporate the effect of the weight function in a direct 
manner. The effect of a non-uniform distribution is conveyed only in a tacit manner, by a careful, 
histographical selection of collocation points. To provide an improved capability for the least 
squares approach, an alternative formulation does include the effects of weighting the collocation 
points. 
 
 Rigorous least-squares derivations are based upon a minimization of squared error. For 
the point collocation polynomial chaos problem, the error may be formulated as follows.[24,25] 
Recall that the polynomial chaos representation for random process *α  is written as 
 

                                                             )()(
0

* ξαξα


i

P

i
i Ψ=∑

=

                                                      (32) 

 
For this analysis, the truncated series is employed. The total squared error E for the chaos 
expansion may be expressed as a function of the expansion coefficients Pjj ,,1,0, =α , i.e., 
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                                   ξξξαξαααα
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Equation (33) integrates over ξ


 as a continuum. To evaluate the squared error for the collocation 

points, we apply the Monte Carlo average.[24,25] 
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To minimize the squared error, we set a condition on the first partial derivative. 
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                                                    (35) 

 
By applying (35) to (34), we obtain 
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After differentiation and substitution, we exchange the order of summation; the result is 
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Equation (37) constitutes a system of linear equations. By setting 
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                                                 (39) 

 
the linear system may be written as 
 

                                                   PkGkik

P

i
i ,,1,0,

0

==Φ∑
=

α                                                (40) 

 
Clearly, the probability weight function is incorporated in both (38) and (39). The system (40) 
can be solved, like (29), by methods such as LU-decomposition.  
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3.4 Legendre Polynomial Chaos 
 
 For this chaos, the uncertainties are represented by a random vector ξ


comprised of a set 

of n  random variables, i.e., 
 
                                                              ),,,( 21 nξξξξ 2


=                                                          (41) 

 
In addition to the random character contained in (4), the random process α is also defined in 
space and time.[14, 15] This process is written as 
 

                                                    )(),(),,(
0

ξαξα


j

P

j
j tξtξ Ψ=∑

=

                                              (42) 

 
Note that this polynomial decomposition, in full form, possesses an infinite number of terms like 
a typical Fourier series. For practical computations, the series is truncated as in (42) to retain 
only a finite number of terms. The maximum number of terms, 1+P , may be computed from the 
formula 
 

                                                               
!!
)!(1

np
npP +

=+                                                            (43) 

 
where p  is the order of the Legendre polynomial set used for the chaos. This total number of 
expansion terms can be arrived at by combinatorial arguments. Therefore, if p  equals five, then 
Legendre polynomials of orders zero through five are used to form the chaos. The construction 
of expansion (42) is very important; each term is separated into a deterministic coefficient 

),( txj
α  and a random tensor product polynomial )(ξ


jΨ . The tensor product polynomial is a 

product of single random variable Legendre polynomials. That is to say, 
 
                                                )()()()( 2211 npnppj LLL ξξξξ 


=Ψ                                               (44) 

 
Table 2. Legendre Polynomials 

Order Legendre Polynomial 
0 1)(0 =ξL  
1 ξξ =)(1L  
2 13)( 2

2 −= ξξL  
3 )35()( 2

3 −= ξξξL  
4 42

4 35303)( ξξξ +−=L  
5 )637015()( 42

5 ξξξξ +−=L  
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Legendre polynomial orders p1, p2,…, pk are constrained such that ppk ≤≤0 , nk ≤≤1 . An 
individual Legendre polynomial pkL  has algebraic order k . The first six Legendre polynomials 
are presented in Table 2. Of course, these polynomials are unique up to a constant multiple. With 
some effort, higher order Legendre polynomials may be calculated by using the Rodrigues 
formula 
 

                                                          n

nn

nn d
d

n
L

ξ
ξξ )1(

!2
1)(

2 −
=                                                 (45) 

 
It follows from (44) that jΨ  has the algebraic order p1 + p2 +   + pk. It is computationally 
advantageous to arrange the terms in (42) by increasing algebraic order beginning with the zeroth 
order term, then the first order terms and so forth. For two random variables 1ξ  and 2ξ , this 
ordering of the jΨ  can be determined from organization shown in Table 3. Those jΨ  possessing 
 

Table 3. Organization of Legendre Polynomials for Two Random Variables 

)()( 000 ξξ LL=Ψ  )()( 102 ξξ LL=Ψ  )()( 205 ξξ LL=Ψ    )()(0 ξξ pLL=Ψ  

)()( 011 ξξ LL=Ψ  )()( 114 ξξ LL=Ψ  )()( 218 ξξ LL=Ψ    )()(1 ξξ pLL=Ψ  

)()( 023 ξξ LL=Ψ  )()( 127 ξξ LL=Ψ  )()( 22 ξξ LL=Ψ    )()(2 ξξ pLL=Ψ  
          

)()( 0 ξξ LLp=Ψ  )()( 1 ξξ LLp=Ψ  )()( 2 ξξ LLp=Ψ    )()(
12 ξξ ppp LL=Ψ

−
 

 
the same algebraic order are located on diagonals (lower left to upper right) in this table. The 
first diagonal has order zero; the second diagonal ( 1Ψ  and 2Ψ ) has order one; the third diagonal (

3Ψ , 4Ψ and 5Ψ ) has order two, and the pth diagonal has order p-1. The remaining diagonals 
follow suit, culminating with the bottom right corner table entry with order 12 −p . The 
numbering of the jΨ  follows that shown in the Table 3, but the larger j indices are omitted 
because of the lengths of the expressions. Still, individual indices are not difficult to discern 
because the length of each diagonal is known. That is, the number of terms possessing the same 
algebraic order is the same as the number of elements in the associated diagonal. 
 
 To support accurate calculations of statistical properties via equations (17), (22) and (23), 
it is necessary to normalize the Legendre polynomials. The normalized magnitude “norm” for an 
orthogonal polynomial )(ξf  may be calculated as follows. The squared norm of )(ξf , denoted 

2f , is given by 
 
                                                         ∫

Ω

=
)(

22 )()(
ξ

ξξ dwff                                                       (46) 
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In equation (46), )(ξΩ is the domain of the random variable ξ  while )(ξdw  is the probability 
measure associated with the random variable. The Legendre chaos is associated with a standard 
uniform random variable ξ  where ]1,1[−∈ξ .  The mean of this random variable is zero, and the 
probability measure is given by 
 

                                                                    
2

)( ξξ ddw =                                                             (47) 

 
With the use of (47), the squared norms for the Legendre polynomials found in Table 2 are 
computed and recorded in Table 4. 
 

Table 4. Squared Norms for the Legendre Polynomials in One Random Variable 

Order Squared 
Norm 

0 1 
1 1/3 
2 4/5 
3 4/7 
4 64/9 
5 64/11 

 
 
3.5 Hermite Polynomial Chaos 
 
 A distinct advantage of the polynomial chaos method is the generality of its mathematical 
form. The equation for the expansion, the structure of the uncertainty vector and number of terms 
in the expansion remain unchanged. Only the orthogonal polynomial set and the probability 
weight function (measure) change. The Hermite chaos is based upon the standard normal 
(Gaussian) distribution, i.e., 
 

                                                     )exp(
)2(

1)( 2
1

2/ xx
p

x


•= nw                                                  (48) 

 
Equation (48) is suited for an uncertainty vector of arbitrary integer length n. For a chaos 
involving only one random variable ξ  (the uncertainty), 
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Similarly, for two random variables ),( 21 ξξξ =


, the weight function is 
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The Hermite polynomials constitute the orthogonal spanning set required for this chaos. The 
Hermite polynomials for one random variable may be calculated from the Rodrigues formula 
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The first five of these polynomials are listed in Table 5 along with their squared norms. 
 

Table 5. Hermite Polynomials 

Order Hermite Polynomial Norm 
0 1)(0 =ξH  1 
1 ξξ =)(1H  1 
2 1)( 2

2 −= ξξH  2 
3 ξξξ 3)( 3

3 −=H  6 
4 42

4 63)( ξξξ +−=H  24 
 
 
For systems involving more than one Gaussian random variable, this chaos is still applicable, but 
the calculation of Hermite polynomials is more difficult. These computations are reserved for a 
future report. The chaos formulations presented in this section and the previous one are well 
suited for the example problems that follow. 
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4.0 RESULTS AND DISCUSSION 
 
 In this section, four test problems are described for the polynomial chaos solution. The 
first three problems are designed for solution by the Legendre chaos. The final problem applies 
the Hermite chaos to resolve the uncertainty associated with shocked gas dynamics 
configuration. The exact statistical parameters for the first four cases are derived in the 
appendices. 
 
4.1 Test Problem 1 
 
 This test case, designed by the author, involves a random process operating on one 
random variable ]1,1[−∈ξ . The random process )(ξf is 
 

                                                        ( )642

3
11)( ξξξξ ++−=f                                                  (52) 

 
Statistical parameters for this random process are computed through the use of a fifth order 
Legendre polynomial chaos. The exact solution for this problem is provided in Appendix A. In 
the terminology of Section 2, 5=p , and 1=n , so 
 

                                                             6
!1!5
)!15(1 =

+
=+P                                                         (53) 

 
For a direct polynomial chaos solution, a system of 6 equations in 6 unknowns must be solved. 
The equations are formulated at the 6 collocation points shown in Table 6. The mean and 
standard deviation calculated for this test problem are shown in Table 7 and compared with the 
exact calculations. The agreement between the chaos estimates and the exact parameters is quite 
good especially given the low number of collocation points. 
 

Table 6. Collocation Point Coordinates for Test Problem 1 

Point No. ξ  
1 -0.90 
2 -0.60 
3 -0.30 
4 0.20 
5 0.55 
6 0.95 

 
 

Table 7. Statistical Parameters for Test Problem 1 

Parameter 5th Order Chaos Exact 
Mean 0.77238 0.7746 

Standard Deviation 0.26228 0.26258 
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4.2 Test Problem 2 
 
 This test problem, again developed by the author, is cast in terms of a random process f 
operating on one random variable ]1,1[−∈ξ  . Specifically, 
 

                                                  ( )( )3)10sin(1
4
1)( 2 +−= ξξξf                                                  (54) 

 
The fifth order Legendre chaos is also applied in estimating the mean and standard deviation for 
this random process. As shown for the previous case, six collocation points are required for this 
test problem. The same list of collocation points provided in Table 6 is used for this problem. 
The Legendre chaos is solved for this test case, and the estimated statistical parameters are listed 
and compared against the exact parameters in Table 8. 
 

Table 8. Collocation Point Coordinates for Test Problem 2 

Parameter 5th Order Chaos Exact 
Mean 0.49401 0.50 

Standard Deviation 0.34134 0.26048 
 
For the low number of collocation points applied here, the agreement between the estimated and 
exact parameters is reasonably good. 
 
4.3 Test Problem 3 
 
 The first two test problems addressed by this report involve one random variable and 
serve to verify the polynomial chaos solution algorithms discussed in Section 2. This test 
problem is cast in two random variables and has a mixture of algebraic and transcendental 
functions.[15] Specifically, 
 
                                                    )5sin()1ln(),( 2

2
121 xxxxf +=                                                 (55) 

 
where 1x  and 2x are uniform random variables with mean 2.0 and a coefficient of variation 
(CoV) of 20%. The mean and CoV can be used to identify the domain of  1x  and 2x , i.e., 
 
                                            ]34.00.2,34.00.2[],[, 21 +−=∈ baxx                                      (56) 
 
Random variables 1x  and 2x  are regarded as functions of standard uniform random variables 2,1ξ

with mean zero and standard deviation 
1

3
−

.  That is, ]1,1[−∈ξ . The domain of 2,1ξ  can be 
mapped onto the domain of 2,1x  (and vice versa) by the transformation 
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The exact statistical parameters for this random process are described in Appendix C.  The 
number of terms required for the Legendre polynomial chaos is calculated as 
 

                                                            21
!2!5
)!25(1 =

+
=+P                                                        (58) 

 
This polynomial chaos is solved for two different point distribution schemes. The first method of 
distributing collocation points is the random method. A linear congruential random number 
generator is used to distribute points in the interval [0,1].[26] Then these points are mapped onto 
the domain of ξ  for use in the random process formulas (55) and (57). A direct solution is 
performed for 21 collocation points. These points are listed in Table 9. Secondly, a least squares 
solution is accomplished for 100 collocation points. For brevity, these points are not listed here. 
The fifth order direct and least squares solutions for this problem are listed and compared with 
exact values in Table 10. 
 

Table 9. Random Collocation Points for the Direct Solution of Problem 3 

Point 1ξ  2ξ  Point 1ξ  2ξ  
1 0.9999974 0.9555932 12 0.4861153 0.1398800 
2 0.6545904 -0.2987570 13 0.9636399 -0.1042775 
3 0.7917758 -0.6235767 14 -0.5915973 -0.9762128 
4 -0.4539059 -0.7957101 15 0.7914310 -0.4188466 
5 0.5000229 -0.1146452 16 0.4447752 -0.6623921 
6 -0.8423904 -0.0558344 17 -0.8242336 -0.8933002 
7 -0.4100209 0.7791101 18 0.3031493 -0.9700800 
8 0.5027170 -0.8346537 19 -0.1349102 0.5640060 
9 -0.0248729 -0.0391431 20 -0.7509418 0.9213717 
10 0.1213641 -0.2343712 21 -0.5064132 0.7136617 
11 0.9234417 0.2839582    

 
       

Table 10. Statistical Parameters for Test Problem 3 with Random Point Distributions 

Parameter Direct Least Squares Exact 
Mean 0.0729048 0.078819 0.079169 

Standard Deviation 1.14888 1.11923 1.12413 
    
      

A second method of solving this problem involves the use of Hammersley sampling points. Both 
the direct and least squares algorithms are applied in estimate the statistical parameters for this 
case. For a direct linear solution, the 21 Hammersley collocation points are listed in Table 11. 
Although not listed here, 100 Hammersley points are used for a least squares solution. Estimates 
of the mean and standard deviation for problem 3 based upon the Hammersley point distributions 
are compared against the exact values in Table 12.  
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 It is interesting to note that, on the whole, polynomial chaos estimates are reasonably 
accurate for this problem, but the accuracy of the least squares estimates for random point 
distributions compare more favorably to the exact values. It is a little shocking to see that 
estimates based upon the Hammersley distributions perform more poorly, even though the 
Hammersley distribution provides better coverage of the sample space. The least squares 
analysis improves the estimates made by using both random and Hammersley point distributions. 
 

Table 11. Hammersley Collocation Points for the Direct Solution of Problem 3 

Point 1ξ  2ξ  Point 1ξ  2ξ  
1 0.9999974 0.9555932 12 0.4861153 0.1398800 
2 0.6545904 -0.2987570 13 0.9636399 -0.1042775 
3 0.7917758 -0.6235767 14 -0.5915973 -0.9762128 
4 -0.4539059 -0.7957101 15 0.7914310 -0.4188466 
5 0.5000229 -0.1146452 16 0.4447752 -0.6623921 
6 -0.8423904 -0.5583447 17 -0.8242336 -0.8933002 
7 -0.4100209 0.7791101 18 0.3031493 -0.9700800 
8 0.5027170 -0.8346537 19 -0.9700800 0.5640060 
9 -0.0248729 -0.0391431 20 -0.7509418 0.9213717 
10 0.1213641 -0.2343712 21 -0.5064132 0.7136617 
11 0.9234417 0.2839582    

 
    

Table 12. Statistical Parameters for Test Problem 3 with Hammersley Point Distributions 

Parameter Direct Least Squares Exact 
Mean 0.061475 0.069076 0.079169 

Standard Deviation 1.183351 1.123245 1.12413 
 
 
4.4 Test Problem 4 
 
 This test case is the last of the truly “academic” demonstration problems addressed here. 
The random process to be considered operates on four independent uniform random variables. 
The random process is defined as 
 
                                          ( )[ ]43214321 5.1exp),,,( xxxxxxxxf +++=                                      (59) 
 
where random variables ,)( iii xx x=  i = 1, …, 4 are functions of the standard uniform random 
variables iξ , where ]1,1[−∈iξ .[15] Random variables ix  have a mean value of 0.4 and a 
coefficient of variation (CoV) of 0.4. With the use of this information, it can be shown that the 
domain for ix  is 
 
                                             ]1208.04.0,1208.04.0[],[ +−=ba                                          (60) 
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For a fifth order polynomial chaos solution, the number of terms for the expansion is calculated 
as follows. 

                                                           126
!4!5
)!45(1 =

+
=+P                                                    (4-10) 

 
A term in the expansion polynomial, following equation (44), has the form 
 
                                                )()()()( 44332211 ξξξξ nnnnn LLLL=Ψ                                      (4-10a) 
 
where 50 ≤≤ nj , 4,,1=j . In this case, a large number of terms is required to determine the 
statistical parameters with fifth order accuracy. This outcome is referred to as the “curse of 
dimensionality”.[27] That is, for a given level of accuracy, the number of expansion terms 
increases significantly for each additional random variable. As with the previous test cases, the 
fifth order Legendre chaos is applied to estimate the mean and standard deviation for equation 
(59). The collocation points are too numerous to list here. Both the direct solution (126 
collocation points) and the least squares solution (200 collocation points) have been computed 
for this problem. The results are presented in Table 13. Because of the poorer performance of the 
Hammersley point set used in the previous test case, it is not used here. For the random point 
sets, the results are quite good with the least squares case granting only minor improvements 
over the direct method. The results for these four test problems indicate that the Legendre chaos 
performs well by rendering sound estimates for statistical parameters. 

        
Table 13. Statistical Parameters for Test Problem 4 with Random Point Distributions 

Parameter Direct Least Squares Exact 
Mean 12.3519 12.3602 12.3609 

Standard Deviation 6.1631 6.1569 6.1556 
 
 
4.5 Test Problem 5 
 
 The preceding problems test the basic operation of the polynomial chaos algorithms 
given known, deterministic function forms. The uncertainty in the system is provided by the 
random variable(s) providing input data. This test case is an actual application of this idea. Here, 
the input uncertainty is provided by changing a physical boundary condition for a computational 
fluid dynamics (CFD) solution.[14, 15, 21] The algebraic functions used in the previous test 
cases are replaced by separate CFD solutions for each “randomly” chosen boundary condition. 
The Hermite chaos is applied to solve the classical oblique shock wave problem. A Mach 3 flow 
field of a calorically perfect gas encounters a wedge. To satisfy this solid surface inviscid 
boundary condition, the flow must turn at the cusp of the wedge or ramp. Physics dictates that 
the turning occurs through an oblique shock wave originating the wedge’s cusp. This scenario is 
illustrated in Figure 1. The uncertainty is provided by perturbations in the wedge angle. The 
mean wedge angle θ  is five degrees, and the distribution of possible wedge angles is Gaussian 
with a coefficient of variation of 10%.[21] Based upon this information, the standard deviation 
for the wedge angle distribution is 
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Figure 1. Oblique Shock Wave Problem Geometry 

 
                                                               5.010.0 == θσ                                                          (63) 
 
The probability distribution for the wedge angle is given by 
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Hence, 
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By using the transformation 
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we obtain the standard normal distribution 
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Equation (66) can be rewritten as follows. 
 
                                                                   ξσθθ +=                                                               (68) 
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By comparing (64) and (67), we note that the standard deviation for the standard normal 
distribution is unity, so to properly sample wedge angles for this problem, samples jξ  must be 
chosen so that .22 ≤≤− jξ  A fourth order Hermite chaos may be used to estimate statistical 
properties for pressure throughout the flow field. Since only one random input variable (wedge 
angle) is involved, the total number of expansion terms is computed as follows.[21] 
 

                                                              5
!1!4
)!14(1 =

+
=+P                                                        (69) 

 
With the use of these equations, the sampled wedge angles are listed in Table 13. 
 

Table 14. Sampled Wedge Angles for the Oblique Shock Wave Case 

j jξ  jθ  
1 -2 4.0 
2 -1 4.5 
3 0 5.0 
4 1 5.5 
5 2 6.0 

 
To statistically sense how the flow field is perturbed by the boundary fluctuation, the flow field 
is sampled at the three points listed in Table 14. Points 1 and 3 differ for each wedge angle since 
point 1 is situated in the shock wave while point 3 is on the wedge surface. As a result, the y 
coordinate of this point differs for each wedge angle. In Reference 15, a fixed set of sampling 
points, a total of three, is used for all wedge angles. This approach is not applied here since an 
undisclosed interpolation algorithm is applied in Reference 15 to refocus the data at the sample 
point locations. Since the points in Table 14 are relatively close to the points used in the archival 
reference, we assume that their values are representative of the random process at the fixed 
points. 
 

Table 15. Sample Point Locations 

Wedge Angle (º) 4.0 4.5 5.0 5.5 6.0 
Point x y y y y y 

1 0.8984 0.3669 0.3675 0.3822 0.3879 0.3969 
2 0.8984 0.2321 0.2333 0.2312 0.2327 0.2311 
3 0.8984 0.0644 0.0722 0.0813 0.0879 0.0985 

 
 The CFD solution for each wedge angle is computed by using the Large Eddy Simulation 
with LInear Eddy modeling in 3 Dimensions (LESLIE3D) multiphase physics computer 
program. LESLIE3D is developed by Professor Suresh Menon at the Georgia Institute of 
Technology. It is a multi-block, massively parallel computer program with extensive physics 
capabilities. Structured grids are developed for each wedge angle, and numerical solutions are 
computed for freestream Mach number 3.0, sea level atmospheric pressure and temperature 
300ºK. A plot of the velocity field for the 5º wedge is shown in Figure 2. LESLIE3D resolves the  
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Figure 2. Oblique Shock Solution X-Velocity Plot for the 5º Wedge 

shock wave accurately confirming the shock angle mandated by the M−− βθ  relationship.[27] 
For the 5º wedge, the Cartesian x-velocity field is show in Figure 2. The pressure field is 
recorded at the sample points (listed in Table 14 and shown in Figure 2) then post-processed by 
using the Hermite polynomial chaos. The ratio of pressure versus freestream pressure is the 
random process considered by the chaos. The computed mean and standard deviation are shown 
in Tables 15 and 16, respectively, for this problem and compared with archived results taken 
from Reference 15. 
 

Table 16. Means Computed for refPP /  via 4th Order Hermite Chaos 

Sample Point Mean Archived 
1 1.2091 1.11433 
2 1.4868 1.45484 
3 1.4651 1.45472 

 
Table 17. Standard Deviations Computed for refPP /  via 4th Order Hermite Chaos 

Sample Point Standard 
Deviation Archived 

1 0.07435 0.14033 
2 0.07036 0.05242 
3 0.09073 0.05227 

 
Overall, the agreement between the present Hermite chaos estimates and the archived estimates 
is good but compares less favorably than the other test problems. There are a number of reasons 
for this less than inspirational comparison. Our method utilizes a different CFD computer 
program and grid than does the archival reference. Also, the LESLIE3D solution is performed 
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for an Oxygen-Nitrogen mixture with air mass fractions and a ratio of specific heats of 1.35. 
Also, the archival solution employs interpolation to fixed sample points. This interpolation 
scheme is not documented, so it cannot be replicated for the present calculations. For future 
problems, the author will devise, implement and document an interpolation procedure to bridge 
the gap between different stochastic realizations of a more complicated problem of choice. 
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5.0  CONCLUSIONS 
 
 This expository report has described basic aspects of the polynomial chaos method for 
representing stochastic or random processes. These methods evolve from the homogeneous 
chaos introduced by Wiener.[10] In summary, random processes can be represented by finite 
series of orthogonal polynomials. The bulk of this work concentrates on the point collocation 
non-intrusive polynomial chaos method due to researchers such as Walters and Hosder.[15] Non-
intrusive methods permit statistical estimates without altering the governing equations. Instead, 
polynomial expansions are developed at a set of collocation points selected for a set of input 
random variables. These random variables, representing the system uncertainties, drive the 
random aspects of the overall random or stochastic process. Although the point collocation 
method renders non-unique results, its estimates have shown to be sufficiently accurate for the 
included test problems. In each case, the present calculations agree well with archived (or exact) 
estimates. 
 
 Polynomial chaos methods are not without difficulties. Perhaps the most prominent 
difficulty is that of dimensionality. The combination of polynomial order and the number of 
random variables (uncertainties) requires an increasing number of expansion terms. To resolve 
the coefficients for a system of n terms, an nn ×  matrix must be solved. Matrix solutions do 
require significant computer resources and time. Moreover, for a time and space dependent 
system, the chaos must be solved at each space location and time of interest. It is in this sense 
that the polynomial chaos method begins to approach the workload involved in a Monte Carlo 
simulation. In addition, the point collocation, non-intrusive polynomial chaos method produces 
results that are not unique. Rather, the results depend, somewhat, on the choice of collocation 
points. The analyst must ensure that the random space receives sufficient coverage. Moreover, it 
must possess the appropriate level of randomness with the appropriate distribution for the 
uncertainties. Other analyses have shown that these methods have difficulties in addressing 
higher magnitude uncertainties, and there are questions concerning the accuracy of polynomial 
expansions.[28] In other instances, the convergence of polynomial chaos expansions may be 
slow, and a given expansion’s accuracy may not increase with the inclusion of more terms. 
Statistical moments of third or higher order may not be accurate.[29]  
 

In a future report, these investigations will continue. The non-intrusive polynomial chaos 
method will be applied to a series of gas dynamics problems involving strongly shocked flow 
fields. The problems, their geometries and associated physics will have greater complexity that 
any of the test cases shown in the present work. A number of uncertainties will be examined, 
particularly those involving the boundary. 
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APPENDIX A 
 

DIRECT STATISTICAL ANALYSIS FOR TEST PROBLEM 1 
 
 This problem is designed to be a simple test case for the Legendre non-intrusive 
polynomial chaos. Possessing a constant integration measure, the calculation of statistical 
parameters is greatly simplified requiring only the evaluation of basic integral averages. This test 
case involves a random process f  operating on a single random variable ]1,1[−∈ξ .This random 
process is written as 
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For this random process, the probability measure is 
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The average, or expected value, for  f  is computed as follows. 
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By evaluating integrals, we obtain 
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The mean for this random process is therefore 
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For this problem, the computation of the variance is similar. Recall that the definition of the 
variance is 
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The first term in (A-6)  
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Algebra can be employed to simplify the integrand obtaining 
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This integral may be evaluated as follows. 
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By simplifying, this moment is 
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Substitution of (A-7) and (A-5) into (A-6), the variance can be computed as 
 
                                       068949.0)7746.0(66896.0)var( 22 =−==σf                               (A-11) 
 
Accordingly, the standard deviation is 
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APPENDIX B 
 

DIRECT STATISTICAL ANALYSIS FOR TEST PROBLEM 2 
 
 This problem is also a simple test case for the Legendre chaos, but it is designed to 
incorporate a transcendental function into the random process. Again, the random process 
operates on a single random variable ]1,1[−∈ξ , and it is defined as 
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The mean of this random process may be computed as follows. 
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As one can see, the probability measure remains the same as in the previous case. Equation (B-3) 
is evaluated as shown below. 
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The third integral in (B-4) can be evaluated by performing a detailed integration by parts as 
 

                                                             0)10sin(
1

1

2 =∫
−

ξξξ d                                                      (B-5) 

 
Intuitively, this integral may be easily computed by realizing that the integrand is anti-
symmetric, the product of odd and even functions. For this reason, it must equal zero. Hence, 
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By integrating, we have that 
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 By using similar means, the variance can be calculated. First, the second moment of f  is 
determined, i.e., 
 

                            ( )( ) ξξξξξ dfE
2
19)10sin(6)10(sin21

16
1)( 242

1

1

2 +++−= ∫
−

                        (B-8) 

 
By expanding the integrand, we have that 
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With a significant amount of effort, the integrals in (B-9) can be evaluated by using multiple 
stages of integration by parts and the half-angle formulas. The result is 
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Recalling the variance formula 
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The variance is computed, through (2-8), (2-10) and (2-11) as 
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As a result, the standard deviation becomes 
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APPENDIX C 
 

DIRECT STATISTICAL ANALYSIS FOR TEST PROBLEM 3 
 
 This problem provides a two-dimensional validation test case for the Non-Intrusive 
Polynomial Chaos method presented earlier in this report. It involves a non-linear function g of 
two random variables, i.e., 
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2
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where x1 and x2 are uniform random variables with common mean 2.0 and a common coefficient 
of variation (CoV) of 20%.[C-1] For convenient reference, the CoV is defined as the ratio of the 
standard deviation to the mean. i.e., 
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These uniform random variables are defined on the interval [a, b]. As a result, x1 and x2 have a 
common probability density function given by 
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with the mean (or expected value) [C-2] of 
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The variance for this distribution is expressed as 
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With the use of these formulas, it may be shown that 
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C.1 Expected Value of g(x1, x2) 
 
 Based upon this information, a first goal is the compute the expected value of g; defined 
in general as 
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where f is the joint probability distribution function of x1 and x2.[C-2] These two random 
variables are independent, so the joint probability function is calculated as the product of their 
individual probability density functions. Hence, 
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Equations (g) and (h) may be used to show that 
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Independence and the product form of g can be used to rewrite (C-8) as 
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The integrals in (C-9) can be evaluated independently, i.e., 
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With the use of equations (C-10) and (C-1l), the expected value of ),( 21 xxg  is calculated as 
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C.2 Variance of g(x1, x2) 
 
 Calculating the variance of ),( 21 xxg  is substantially more complicated than the expected 
value computation. The variance 2σ  of a random variable is defined as follows.[C-2] 
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To obtain the variance of g, it is necessary to obtain the moment )],([ 21

2 xxgE . That is, 
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Fortunately, the multiple integral above is separable in that 
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The integral over the random variable x2 is easily evaluated as 
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The remaining integral is much more difficult to evaluate. In fact, it cannot be evaluated in terms 
of elementary functions. With a substantial amount of work, it can be shown that 
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where 
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The final integral in equation (C-17) cannot be evaluated in terms of elementary functions. It 
requires the use of numerical quadrature or application of the Clausen function CL2. Appendix E 
describes the Clausen function, but the core result needed is that 
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In equation (C-17), the corresponding integral may be written as 
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Equations (C-19) and (C-20) may be combined to obtain the result 
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Even with good numerical techniques and polynomial series expansions, Clausen functions are 
challenging to evaluate. For this reason, the definite integral in equation (t) has been evaluated 
by a variety of techniques. The results are shown in Table C-1. For the numerical 
approximations, the composite trapezoidal and Simpson’s rules are applied. Clausen functions 1 
and 2 are described in Appendix E. 
 

Table C-18. Definite Integral of ln (cos θ) 

Quadrature Method Value 
Trapezoidal Rule -0.2211678 
Simpson’s Rule -0.2211675 

Clausen Formula 1 -0.2206295 
Clausen Formula 2 -0.2211681 

 
 
With the use of equations (C-13), (C-16) and (C-17) with the data in Table 1, variance 
approximations can be computed for g(x1, x2). These results are presented in Table C-2. 
 

Table C-2. Variance Approximations for Random Function g 

ln (cos θ) Quadrature Method Variance Standard Deviation 
Trapezoidal Rule 1.263684 1.124137 
Simpson’s Rule 1.263683 1.124136 

Clausen Formula 1 1.262185 1.123470 
Clausen Formula 2 1.263685 1.124137 
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APPENDIX D 
 

DIRECT STATISTICAL ANALYSIS FOR TEST PROBLEM 4 
 
 This test problem involves a model random process that operates on four uniform random 
variables )( jjj xx x= , 4,,1=j . Specifically, the process is written 
 
                                         ( )[ ]43214321 5.1exp),,,( xxxxxxxxf +++=                                     (D-
1) 
 
These variables, in turn, rely upon the 4 standard uniform variables jξ , ]1,1[−∈jξ .For the 
random variables, jx , 4,,1=j , the mean value is 0.4 and the coefficient of variation is 0.4.[D-
1] From this information, it can be shown that the domain of jx  is 
 
                                         ]1208.04.0,1208.04.0[],[ +−=∈ bax j                                     (D-2) 
 
Since (D-1) operates on four independent uniform random variables, the joint probability density 
function is written as 
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The expected value of the random process is then computed as 
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The recurring integral appearing in (D-5) is easily calculated as 
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with a and b given by (D-2). As a result, the expected value becomes 
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The second moment of this random process may be calculated in the same way after noting that 



 

39 
Distribution A 

                [ ] )](3exp[))(5.1exp(),,,( 4321
2

43214321
2 xxxxxxxxxxxxf +++=+++=          (D-8) 

 
The associated integral for )( 2fE  has the same form as (D-5); thus, with 
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we have that 
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Using the definitions of variance and standard deviation, the standard deviation is calculated as 
 
                                                                    1556.6=σ                                                         (D-11) 
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APPENDIX E 
 

CLAUSEN’S FUNCTION 
 
 In association with the polylogarithm, polygamma and Riemann Zeta functions, the 
Clausen function has applications in physics, such as in the field of electrodynamics.[E-1] As is 
indicated by this report, it also has uses in probability modeling. Clausen’s function is defined as 
follows. 
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A theoretical series expansion also exists for this function, i.e, 
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This infinite series is slowly convergent and generally not used for calculations. Instead, series 
based upon Chebyshev polynomials are often recommended for generating the Clausen 
functions.[E-2,E-3] Although these methods are accurate, they are computationally complicated 
and still involve the use of infinite series. These difficulties motivate the use of numerical 
quadrature techniques and approximate functional forms. 
 
 The Clausen integral (E-1) can be evaluated by the use of basic numerical integration 
techniques such as the composite forms of the Trapezoidal and Simpson’s rules.[E-4] To justify 
the use of quadrature on (E-1), it is necessary to show that the integrand is finite at the lower 
limit of integration. At first glance, the sine function is zero at zero, so the natural logarithm at 
this point would seem to tend to minus infinity. This potential difficulty requires more in-depth 
analysis. By applying the asymptotic approximation for the sine function of small arguments, we 
have that 
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The absolute value bars have been eliminated from (E-3) since x is confined to the domain [0, π]. 
With this approximation, we can estimate the Clausen integral as 
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If this result is finite in the limit as 0→x , then the Clausen integral is finite and can be 
approximated by quadrature. This limit is evaluated as follows. 
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Figure E-1. Approximate values of the Clausen function versus an angular argument 
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L’Hopital’s rule has been employed in obtaining this result, so the Clausen integral is finite and 
may be evaluated by use of the composite Trapezoidal and Simpson rules. Alternatively, formula 
approximations may be used to evaluate the Clausen function. 
 
 For comparison, there are two approximate formulas for the Clausen function.[E-5] The 
simpler formula is given as 
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where πθ ≤≤0 . The second formula, regarded to be of higher accuracy, may be written as 
 

              

( ) ( )( ) ( )
( ) ( )
( ) ( ) θθ

θθ

θθπθπθθθθ

5sin37500
103972ln5

24sin2ln2
1

12288
4259

3sin972
4492ln3

22sin2ln128
89

sin4
52ln23712028802sinln)(CL 2222

2

−+−−

−+−−

−++−−+−=

      (E-7) 

 
where πθ ≤≤0 .  A relative error of 0.63% is quoted for (E-6) while a relative error of 0.003% 
is similarly quoted for (E-7).[E-3] These error estimates must be qualified because the theory 
restricts the argument θ to a rational multiple of π where a rational argument is the ratio of two 
integers. The meaning in this case is that (E-6) and (E-7) are not valid, in the strictest sense, for 
irrational multiples of π. It is more difficult to quantify accuracy in this case. Still, these formulas 
seem suitable enough for performing comparison calculations. A plot of the Clausen function 
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evaluated by trapezoidal rule (TRAPZ), Simpson’s rule (SIMPS), formula (E-6) (APPRX1) and 
formula (E-7) (APPRX2) are shown in Figure (E-1). 
 
 In Appendix C, the computation of variance requires evaluating the integral of the 
logarithmic cosine, i.e., 
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This integral can be evaluated as follows. We begin with the Clausen integral, i.e., 
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By using the transformation of variables yx 2=  along with the trigonometric identity 
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By substituting (E-10) into (E-9) and by applying a property of the logarithm, 
 

                                      dyydyy
∫∫ 






−






−=

2/

0

2/

0
2 2

cos2ln2
2

sin2ln2)(CL
θθ

θ                         (E-11) 

 
Equation (E-9) easily demonstrates that 
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With the change of variables xy 2= , we have that 
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By replacing θ  with θ4 , we obtain 
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The Clausen identity 
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may be repeatedly applied to obtain 
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Hence, 
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 The notation CL2 denotes a Clausen function of the second order. Although this second 
order function is more commonly used, higher order Clausen function, e.g., CL4, CL6, exist.[E-3] 
These functions are evaluated from series of orthogonal  polynomials. This numerical procedure 
is more complicated than either of the quadrature rules mentioned earlier or the formulas above. 
The methods used to compute the 2CL create curves that map closely together. Hence, we have 
confidence in applying quadrature formulas for evaluating Clausen’s functions. 
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LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS 
 
 CFD ......................Computational Fluid Dynamics 
 E ...........................Error 
 Hn .........................Hermite polynomial 
 LESLIE3D ...........Large Eddy Simulation with Linear Eddy Modeling in 3 Dimensions 
 Ln ..........................Legendre polynomial 
 PC .........................Polynomial chaos 
 w ...........................Probability density function 
 α ...........................Stochastic or random process 
 αj ...........................Expansion coefficients 
 ξn ..........................Random variable 
 ξ


 ..........................Vector of random variables 

 nΨ  ........................Orthogonal polynomial 
 θ  ..........................Random event 
 Ω  .........................Event space 
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